Concreto reforçado com fibras poliméricas submetido a temperaturas elevadas

Nenhuma Miniatura disponível
Data
2019-03-12
Autores
Dias, Dainer Marçal
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Espírito Santo
Resumo
From the earliest days great fires have plagued human civilization. Technological advances and increasingly compact buildings can generate devastating thermal energy. As a result, it is necessary to study the constructive materials and propose alternatives. It is known that fires in compartments present an ignition point, growth phase, with or without generalized burning, apex and decay due to the lack of combustible material or the oxidizer. As it is also known that conventional laboratory tests do not always reflect the behavior of a live fire. The objective of this work was to investigate the influence of the addition of polymeric fibers of polypropylene, polyester, polyamide, aramid and aramid pulp in the behavior of concretes subjected to high temperatures. For that, test specimens with fiber additions were made at a rate of 2 kg/m3 . The samples, besides the ambient temperature, were submitted to the temperatures of 300°C, 500°C and 700°C in furnace, as well as to high temperatures through direct fire test in grill. Pillars were also built and submitted to fire through a live fire simulator of the Fire Department of the Espírito Santo - Brazil, which also provided logistical and technical support in fire tests. Compressive strength, flexural tensile strength, splitting tensile strength, mass loss and ultrasonic pulse velocity tests were subsequently performed. After statistical analysis it was observed that the polymeric fibers can significantly influence the concrete properties. Fire test with standard fire load may be an alternative or complementary analysis of concrete submitted to high temperatures, since the furnace tests do not faithfully represent the conditions found in a real fire. In addition, polymeric fibers with low melt temperature helped to mitigate the spalling of concrete.
Descrição
Palavras-chave
Reinforced concrete , polymeric fibres , high temperatures , fire , mechanical properties , Propriedades mecânicas , Concreto reforçado , fibras poliméricas , altas temperaturas , incêndio , propriedades mecânicas
Citação
DIAS, Dainer Marçal. Concreto reforçado com fibras poliméricas submetido a temperaturas elevadas. 2019. 204 f. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2019.