ALGORITMOS HEURÍSTICOS INTELIGENTES PARA PROBLEMAS DE LAYOUT EM LINHA ÚNICA E LINHA DUPLA
bibo.pageEnd | 168 | |
dc.contributor.advisor1 | Amaral, André Renato Sales | |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-7344-3994 | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4695002674556067 | |
dc.contributor.author | Cravo, Gildásio Lecchi | |
dc.contributor.authorID | https://orcid.org/0000-0003-2497-2835 | |
dc.contributor.authorLattes | http://lattes.cnpq.br/4301368869549226 | |
dc.contributor.referee1 | Mauri, Geraldo Regis | |
dc.contributor.referee1ID | https://orcid.org/0000-0002-8393-7741 | |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/7870111209439581 | |
dc.contributor.referee2 | Mestria, Mário | |
dc.contributor.referee2ID | https://orcid.org/0000-0001-8283-0806 | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5866381928751063 | |
dc.contributor.referee3 | Boeres, Maria Claudia Silva | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-9801-2410 | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/0528154281423964 | |
dc.contributor.referee4 | Lorenzoni, Luciano Lessa | |
dc.contributor.referee4ID | https://orcid.org/0000-0003-4859-7750 | |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/7959495705859101 | |
dc.date.accessioned | 2024-05-30T00:50:04Z | |
dc.date.available | 2024-05-30T00:50:04Z | |
dc.date.issued | 2021-08-03 | |
dc.description.abstract | The study of layout of facilities aims to determine the best use of available space, resulting in more effective manufacturing processes in the context of industry. This thesis addresses four facility layout problems, categorized as row layout, in which facilities must be arranged in one or two straight lines, respecting some allocation constraints. Initially, the problem of single-row facility layout (SRFLP) is addressed, which consists of arranging facilities along a straight line, in order to minimize the weighted sum of the distances between all pairs of facilities. The other three problems addressed in this study are SRFLP extensions, in which the facilities are arranged in two lines, namely: the double-row layout problem (DRLP), the parallel row ordering problem (PROP) and the bi-objective corridor allocation problem (bCAP). An algorithm called GRASP-F is proposed for SRFLP. The computational experiments show the efficiency of the method by improving the known-values for 29 out of 93 instances in the literature with up to 1000 facilities. To date, this is the second work to consider problems of this magnitude. For DRLP, a purely heuristic approach, called PSO-DRLP, is proposed based on the Particle Swarm Optimization meta-heuristic. The PSO-DRLP presented values equal to or better than the known-values for 35 of 51 instances in the literature, and, for the remaining 16, the values found are very close to the best-known values. The solution algorithm for PROP, called AILS, is based on the ILS meta-heuristic, but unlike the standard, two phases with different intensification and diversification characteristics were used, in addition to using techniques to accelerate the calculation of the gain in the objective function in the neighborhood move used in the local search. The results found improved 49 out of 100 instances with previous known results and for the remaining 51 instances the best-known results were achieved. In addition to these tests, experiments were carried out using 6 instances with up to 300 facilities, unprecedented in the context of PROP. For bCAP, an algorithm similar to AILS-PROP was proposed, also in two phases and with techniques to accelerate the calculation of the gain in the objective function in the neighborhood movements used in the local search, having obtained excellent results for 76 tested instances. In general, the proposed solutions for the four problems can be considered excellent alternatives to solve layout problems in single and double lines, being possible to obtain high quality results for large problems in low computational times. | |
dc.description.resumo | O estudo de layout de facilidades tem como objetivo determinar a melhor utilização do espaço disponível, resultando em processos de fabricação mais efetivos no contexto da indústria. Esta tese aborda quatro problemas de layout de facilidades, categorizados como layout em linha, em que facilidades devem ser organizadas em uma ou duas linhas retas, respeitando algumas restrições de alocação. Inicialmente é abordado o problema de layout de facilidades em linha única (SRFLP), que consiste em arranjar facilidades ao longo de uma linha reta, a fim de minimizar a soma ponderada das distâncias entre todos os pares de facilidades. Os outros três problemas abordados neste estudo são extensões do SRFLP, em que as facilidades são dispostas em duas linhas, sendo eles: o problema de layout em linha dupla (DRLP), o problema de ordenação em linhas paralelas (PROP) e o problema de alocação de corredor biobjetivo (bCAP). Um algoritmo denominado GRASP-F é proposto para o SRFLP. Os experimentos computacionais mostram a eficiência do método com a melhora dos valores conhecidos para 29 das 93 instâncias da literatura com até 1000 facilidades. Até a presente data, este é o segundo trabalho a considerar problemas dessa magnitude. Para o DRLP, uma abordagem com estratégias heurísticas, denominada PSO-DRLP, é proposta baseando-se na meta-heurística Particle Swarm Optimization. O PSO-DRLP apresentou valores iguais ou melhores que os valores conhecidos para 35 de 51 instâncias da literatura, e, para as 16 restantes, os valores encontrados estão bem próximos dos melhores valores conhecidos. O algoritmo de solução para o PROP, denominado AILS, baseia-se na meta-heurística ILS, mas diferentemente do padrão dessa meta-heurística, foram utilizadas novas estratégias de intensificação e diversificação, além de utilizar técnicas para acelerar o cálculo do ganho na função objetivo no movimento de vizinhança usado na busca local. Os resultados encontrados melhoraram 49 de 100 instâncias com resultados prévios conhecidos e para 51 instâncias restantes, os melhores resultados conhecidos foram alcançados. Além desses testes, foram realizados experimentos utilizando 6 instâncias com até 300 facilidades, inéditas no contexto do PROP. Para o bCAP, um algoritmo semelhante ao AILS-PROP foi proposto, também em duas fases e com técnicas para acelerar o cálculo do ganho na função objetivo nos movimentos de vizinhança utilizados na busca local, tendo obtido excelentes resultados para 76 instâncias testadas. De modo geral, as propostas de soluções para os quatro problemas podem ser consideradas excelentes alternativas para resolver problemas de layout em linhas única e dupla, sendo possível a obtenção de resultados de alta qualidade para problemas de grande porte em tempos computacionais baixos. | |
dc.format | Text | |
dc.identifier.uri | http://repositorio.ufes.br/handle/10/15172 | |
dc.language | por | |
dc.publisher | Universidade Federal do Espírito Santo | |
dc.publisher.country | BR | |
dc.publisher.course | Doutorado em Ciência da Computação | |
dc.publisher.department | Centro Tecnológico | |
dc.publisher.initials | UFES | |
dc.publisher.program | Programa de Pós-Graduação em Informática | |
dc.rights | open access | |
dc.subject | Layout de facilidades | |
dc.subject | SRFLP | |
dc.subject | DRLP | |
dc.subject | PROP | |
dc.subject | bCAP | |
dc.subject | meta-heurísticas | |
dc.subject.br-rjbn | subject.br-rjbn | |
dc.subject.cnpq | Ciência da Computação | |
dc.title | ALGORITMOS HEURÍSTICOS INTELIGENTES PARA PROBLEMAS DE LAYOUT EM LINHA ÚNICA E LINHA DUPLA | |
dc.title.alternative | title.alternative | |
dc.type | doctoralThesis |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- GildasioLecchiCravo-2021-tese.pdf
- Tamanho:
- 3.67 MB
- Formato:
- Adobe Portable Document Format
- Descrição: