Sobre a geometria Lipschitz de polinômios quase-homogeneos
dc.contributor.advisor1 | Câmara, Leonardo Meireles | |
dc.contributor.advisor1ID | https://orcid.org/0000-0002-4637-8573 | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9240898305551070 | |
dc.contributor.author | Aquino Neto, Gabriel da Macena de | |
dc.contributor.authorID | https://orcid.org/0009-0002-3889-6044 | |
dc.contributor.authorLattes | http://lattes.cnpq.br/0868237399371299 | |
dc.contributor.referee1 | Silva, Thiago Filipe da | |
dc.contributor.referee1ID | https://orcid.org/0000-0002-3152-0987 | |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5049713215002090 | |
dc.contributor.referee2 | Fernandes, Alexandre César Gurgel | |
dc.contributor.referee2ID | https://orcid.org/0000-0001-7846-0312 | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/8791056897839415 | |
dc.date.accessioned | 2025-03-26T23:04:02Z | |
dc.date.available | 2025-03-26T23:04:02Z | |
dc.date.issued | 2024-10-21 | |
dc.description.abstract | In this work, we will show how to determine, in a general context, whether two real quasi-homogeneous polynomials in two variables with weights ϖ = (p,q) are R-semialgebraically Lipschitz equivalent. Initially, we characterize the Lipschitz equivalence of real polynomial functions of one variable by comparing the values and also the multiplicities of the polynomial functions at their critical points. Sub sequently, under general conditions, we will reduce the problem of R-semialgebraic Lipschitz equivalence of quasi-homogeneous polynomials in two variables to the pro blem of Lipschitz equivalence of real polynomial functions of one variable. As an application of the theory developed throughout this dissertation, we will analyze the properties, in the context of R-semialgebraic Lipschitz equivalence, of a specific fa mily of quasi-homogeneous polynomials considered in [9, Henry and Parusinski], to show that the bi-Lipschitz equivalence of germs of analytic functions (R2,0) → (R,0) admits continuous moduli. Consequently, the R-semialgebraic Lipschitz equivalence of real quasi-homogeneous polynomials in two variables also admits continuous mo duli. Finally, we explore the possibility of simplifying the classification space of quasi-homogeneous polynomials. | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) | |
dc.format | Text | |
dc.identifier.uri | http://repositorio.ufes.br/handle/10/18831 | |
dc.language | por | |
dc.language.iso | pt | |
dc.publisher | Universidade Federal do Espírito Santo | |
dc.publisher.country | BR | |
dc.publisher.course | Mestrado em Matemática | |
dc.publisher.department | Centro de Ciências Exatas | |
dc.publisher.initials | UFES | |
dc.publisher.program | Programa de Pós-Graduação em Matemática | |
dc.rights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | R-equivalência Lipschitz semi-algébrica | |
dc.subject | Polinômios quase-homogêneos | |
dc.subject | Moduli contínuo | |
dc.subject | R-semialgebraic Lipschitz equivalence | |
dc.subject | Quasihomogeneous polynomials | |
dc.subject | Continuous moduli | |
dc.subject.cnpq | Área(s) do conhecimento do documento (Tabela CNPq) | |
dc.title | Sobre a geometria Lipschitz de polinômios quase-homogeneos | |
dc.type | masterThesis | |
foaf.mbox | email@ufes.br |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- GabrieldaMacenadeAquinoNeto-2024-dissertacao.pdf
- Tamanho:
- 1.18 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: