Matemática
URI Permanente desta comunidade
Programa de Pós-Graduação em Matemática
Centro: CCE
Telefone: (27) 4009 2474
URL do programa: http://www.matematica.ufes.br/pos-graduacao/PPGMAT
Navegar
Navegando Matemática por Autor "Aquino Neto, Gabriel da Macena de"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemSobre a geometria Lipschitz de polinômios quase-homogeneos(Universidade Federal do Espírito Santo, 2024-10-21) Aquino Neto, Gabriel da Macena de; Câmara, Leonardo Meireles; https://orcid.org/0000-0002-4637-8573; http://lattes.cnpq.br/9240898305551070; https://orcid.org/0009-0002-3889-6044; http://lattes.cnpq.br/0868237399371299; Silva, Thiago Filipe da; https://orcid.org/0000-0002-3152-0987; http://lattes.cnpq.br/5049713215002090; Fernandes, Alexandre César Gurgel ; https://orcid.org/0000-0001-7846-0312; http://lattes.cnpq.br/8791056897839415In this work, we will show how to determine, in a general context, whether two real quasi-homogeneous polynomials in two variables with weights ϖ = (p,q) are R-semialgebraically Lipschitz equivalent. Initially, we characterize the Lipschitz equivalence of real polynomial functions of one variable by comparing the values and also the multiplicities of the polynomial functions at their critical points. Sub sequently, under general conditions, we will reduce the problem of R-semialgebraic Lipschitz equivalence of quasi-homogeneous polynomials in two variables to the pro blem of Lipschitz equivalence of real polynomial functions of one variable. As an application of the theory developed throughout this dissertation, we will analyze the properties, in the context of R-semialgebraic Lipschitz equivalence, of a specific fa mily of quasi-homogeneous polynomials considered in [9, Henry and Parusinski], to show that the bi-Lipschitz equivalence of germs of analytic functions (R2,0) → (R,0) admits continuous moduli. Consequently, the R-semialgebraic Lipschitz equivalence of real quasi-homogeneous polynomials in two variables also admits continuous mo duli. Finally, we explore the possibility of simplifying the classification space of quasi-homogeneous polynomials.