Ciência e Tecnologia de Alimentos
URI Permanente desta comunidade
Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
Centro: CCAE
Telefone: (28) 3552 8719
URL do programa: https://cienciaetecnologiadealimentos.ufes.br/pt-br/pos-graduacao/PPGCTA
Navegar
Navegando Ciência e Tecnologia de Alimentos por Autor "Bernardes, Andressa Ladeira"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemBioacessibilidade in vitro de compostos fenólicos microencapsulados do fruto Jussara (Euterpe edulis Martius) e aplicação em sistema-modelo de gelatina(Universidade Federal do Espírito Santo, 2017-07-20) Bernardes, Andressa Ladeira; Tostes, Maria das Graças Vaz; Careta, Francisco de Paula; Costa, André Gustavo Vasconcelos; Silva, Pollyanna IbrahimThe fruit jussara (Euterpe edulis Martius) is rich in phenolic compounds and anthocyanins, which are strong antioxidants and bring beneficial effects on health. Anthocianins are soluble pigments, they are used as natural colors in some products by the food industry as an alternative for artificial colorants. Anthocyanins are unstable at pH above 4.0 and may be more degraded, which reduces their bioaccessibility. Microencapsulation technology can be a useful tool to improve the stability of polyphenols and anthocyanins, providing greater bioaccessibility. The aim of this study was to analyze the bioaccessibility of phenolic compounds and microencapsulated anthocyanins of the Jussara fruit, through the in vitro digestion and later application in gelatine model system. An analysis of the centesimal composition of the fruit pulp was performed. The phenolic and anthocyanin compounds of the jussara fruit pulp (PO) were extracted and microencapsulated with maltodextrin (MD), inulin (IN) and gum arabic (GA). The in vitro digestion of jussara pulp and microencapsulated was made, and successive application of the microencapsulated in gelatine model system. Physicochemical analyzes (water activity - aw, solubility, pH, total polyphenols and anthocyanins, antioxidant capacity and overall color difference) were also executed. An analysis of variance (ANOVA), complemented with Dunnet's test, was applied to compare the microencapsulated with the pulp (p <0.05). The Tukey test was used to compare the microcapsules (p <0.05). The degration constant (k) and the half-life (t ½) were obtained by regression analysis, assuming it as a first-order model. The microcapsules showed aw 0.35-0.57, solubility of 99% and pH <4.0. The bioaccessibility of anthocyanins was higher for PO (24.90%), followed by GA (24.67%), IN (19.28%) and MD (18.71%), but there were no statistic differences between them. However, for the phenolic content, GA (44.65%) presented a higher percentage of recovery compared to PO (30.32%; p <0.05). In the gelatin model system the anthocyanin degradation constant (k) was higher in GA (0.0047), followed by MD (0.0043) and IN (0.0039). For phenolic compounds the degradation constant followed the order: MD (0.0153) > IN (0.0114) > GA (0.0052). The color parameters (L *, a *, b *, C *, h° and ?E *) showed a color trend from red to blue, except for GA that showed a more yellow (h°). During the 72 hours, no color difference was observed in the treatments. The in vitro bioaccessibility of anthocyanins and phenolic compounds were similar in all microencapsulated samples. The incorporation of microencapsulated anthocyanins with IN is promising, as it gave protection to the pigment and specific color throughout the storage.